Glidande medelvärde modell exempel


Flyttande medelvärde. Detta exempel lär dig hur man beräknar det glidande medlet av en tidsserie i Excel. Ett glidande medel används för att släpa ut oregelbundenheter toppar och dalar för att enkelt kunna känna igen trenderna. 1 Först, låt oss ta en titt på vår tidsserie.2 På Datafliken klickar du på Data Analysis. Note kan inte hitta knappen Data Analysis Klicka här för att ladda till verktyget Add-in Analysis ToolPak.3 Välj Flytta genomsnitt och klicka på OK.4 Klicka på rutan Inmatningsområde och välj intervallet B2 M2. 5 Klicka i rutan Intervall och skriv 6.6 Klicka i rutan Utmatningsområde och välj cell B3.8 Skriv ett diagram över dessa värden. Planering eftersom vi anger intervallet till 6 är det rörliga genomsnittet genomsnittet för de föregående 5 datapunkterna och Den aktuella datapunkten Som ett resultat utjämnas toppar och dalar Grafen visar en ökande trend Excel kan inte beräkna det glidande medlet för de första 5 datapunkterna eftersom det inte finns tillräckligt med tidigare datapunkter.9 Upprepa steg 2 till 8 för intervall 2 Och intervall 4.Konklusion Den la Rger intervallet desto mer topparna och dalarna släpper ut. Ju mindre intervallet desto närmare de rörliga medelvärdena ligger till de faktiska datapunkterna. Möjliga medelvärden - Enkla och exponentiella. Genomsnittliga medelvärden - Enkla och exponentiella. för att bilda en trendföljande indikator De förutspår inte prisriktningen utan definierar snarare den aktuella riktningen med en fördröjning. Förflyttande medelvärden fördröjning eftersom de är baserade på tidigare priser Trots denna fördröjning hjälper glidande medelvärden till en jämn prisåtgärd och filtrerar ut bruset. De bildar också Byggstenen för många andra tekniska indikatorer och överlagringar, såsom Bollinger Bands MACD och McClellan Oscillator De två mest populära typerna av glidande medelvärden är Simple Moving Average SMA och Exponential Moving Average EMA. Dessa rörliga medelvärden kan användas för att identifiera riktningen av trenden eller definiera potentiella stöd - och motståndsnivåer. Här är ett diagram med både en SMA och en EMA på den. Klicka på diagrammet för en levande version. Simple Moving Average Calculation. A simple moving average bildas genom att beräkna det genomsnittliga priset på en säkerhet över ett visst antal perioder. De flesta glidande medelvärden är baserade på slutkurs. Ett 5-dagars enkelt glidande medelvärde är den fem dagars summan av slutkurserna dividerat med fem Som namnet antyder är ett glidande medelvärde ett medelvärde som rör sig. Gammal data släpps när nya data kommer tillgängliga. Detta medför att medelvärdet flyttas längs tidsskalan. Nedan är ett exempel på ett 5-dagars glidande medelvärde som utvecklas över tre dagar . Den första dagen i glidande medel täcker helt enkelt de senaste fem dagarna. Den andra dagen i glidande medel sjunker den första datapunkten 11 och lägger till den nya datapunkten 16 Den tredje dagen i glidande medel fortsätter genom att släppa den första datapunkten 12 och Lägga till den nya datapunkten 17 I exemplet ovan ökar priserna gradvis från 11 till 17 under totalt sju dagar. Observera att det rörliga genomsnittet också stiger från 13 till 15 över en tre dagars beräkningsperiod. Observera också t hatt varje glidande medelvärde ligger strax under det sista priset. Till exempel är det glidande medlet för dag ett lika med 13 och det sista priset är 15 Priser de föregående fyra dagarna var lägre och det medför att det rörliga genomsnittsvärdet försvinner. Exponential Moving Average Calculation. Exponential Rörliga medelvärden minskar fördröjningen genom att tillämpa mer vikt på de senaste priserna Den viktning som tillämpas på det senaste priset beror på antalet perioder i glidande medelvärde. Det finns tre steg för att beräkna ett exponentiellt glidande medelvärde. Beräkna först det enkla glidande medlet. En exponentiell rörelse Genomsnittlig EMA måste börja någonstans så att ett enkelt glidande medelvärde används som föregående period s EMA i den första beräkningen Andra, beräkna viktnings multiplikatorn Tredje beräkna exponentiell glidande medelvärdet Formeln nedan är för en 10-dagars EMA. A 10- period exponentiell glidande medel gäller en 18 18 viktning till det senaste priset En 10-period EMA kan också kallas en 18 18 EMA En 20-tiden EMA tillämpar en 9 52 vi Vägning till det senaste priset 2 20 1 0952 Observera att viktningen för den kortare tidsperioden är mer än vikten för längre tidsperiod Faktum är att viktningen sjunker med hälften varje gång den glidande medeltiden fördubblas. Om du vill ha oss en specifik procentandel för en EMA kan du använda denna formel för att konvertera den till tidsperioder och ange det där värdet som EMA s-parametern. Längs är ett kalkylblad exempel på ett 10 dagars enkelt glidande medelvärde och ett 10-dagars exponentiellt glidande medelvärde för Intel Enkla glidande medelvärden är rakt framåt och kräver liten förklaring 10-dagars genomsnittet rör sig helt enkelt eftersom nya priser blir tillgängliga och gamla priser faller av. Det exponentiella glidande medlet börjar med det enkla glidande medelvärdet 22 22 i den första beräkningen Efter den första beräkningen , den normala formeln tar över Eftersom en EMA börjar med ett enkelt glidande medelvärde, kommer dess sanna värde inte att realiseras förrän 20 eller så perioder senare Med andra ord värdet på Excel-kalkylbladet kan skilja sig från diagramvärdet på grund av den korta återkallstiden. Detta kalkylblad går bara tillbaka 30 perioder, vilket innebär att påverkan på det enkla glidande medlet har haft 20 perioder att sprida. StockCharts går tillbaka åtminstone 250-perioder, vanligen mycket längre för dess beräkningar så effekterna av det enkla glidande medlet i den första beräkningen har helt sönderfallet. Lagfaktorn. Ju längre glidande medelvärde desto mer är ett 10-dagars exponentiellt glidande medelvärde att krama priserna ganska nära och vända kort efter att priserna blivit korta glidande medelvärden är som fartygsbåtar - skumma och snabba att förändra I motsats till detta innehåller ett 100-dagars glidande medelvärde massor av tidigare data som saktar ner den. Längre glidande medelvärden är som havs tankfartyg - slö och långsam att byta Det tar ett större och längre pris rörelse för ett 100-dagars glidande medelvärde för att ändra kurs. Klicka på diagrammet för en levande version. Diagrammet ovan visar SP 500 ETF med en 10-dagars EMA nära följande priser och en 100-dagars SMA slipning högre Även vid nedgången i januari-februari behöll det 100-dagars SMA kursen och sänktes inte. Den 50-dagars SMA passar någonstans mellan 10 och 100 dagars glidande medelvärden när det gäller lagfaktorn. Simpel mot exponentiell rörelse Medelvärden. Även om det finns tydliga skillnader mellan enkla glidande medelvärden och exponentiella glidmedel, är det inte nödvändigtvis bättre än de andra exponentiella glidmedelvärdena har mindre fördröjning och är därför känsligare för de senaste priserna - och de senaste prisförändringarna. Exponentiella glidmedelvärden kommer att vända sig före enkla glidande medelvärden Enkla glidande medelvärden representerar däremot ett sannt genomsnitt av priser under hela tidsperioden. Således kan enkla glidande medelvärden vara bättre lämpade för att identifiera stöd - eller motståndsnivåer. Förskjutande medelpreferens beror på mål, analytisk stil och tidshorisont Chartists ska experimentera med båda typerna av glidande medelvärden samt olika tidsramar för att hitta den bästa passformen. Diagrammet bel ow visar IBM med 50-dagars SMA i rött och 50-dagars EMA i grönt Både toppade i slutet av januari, men nedgången i EMA var skarpare än minskningen i SMA EMA-enheten kom upp i mitten av februari, men SMA Fortsatt lägre till slutet av mars Lägg märke till att SMA visade sig över en månad efter EMA. Lengths och Timeframes. The längd på glidande medel beror på de analytiska målen. Korta glidande medelvärden 5-20 perioder passar bäst för kortsiktiga trender och trading Chartists intresserade av medellång sikt trenden skulle välja längre flytta medelvärden som kan sträcka sig 20-60 perioder Långsiktiga investerare föredrar att flytta medeltal med 100 eller flera perioder. Vissa rörliga medellängder är mer populära än andra 200-dagars rörelse genomsnittet är kanske det mest populära På grund av dess längd är detta tydligt ett långsiktigt glidande medelvärde. Nästa 50-dagars glidande medelvärde är ganska populärt för den medellånga trenden. Många kartläggare använder 50-dagars och 200-dagars glidande medelvärden tillsammans Kort sikt , ett 10-dagars glidande medelvärde var ganska populärt i det förflutna eftersom det var lätt att beräkna. En helt enkelt lade till siffrorna och flyttade decimalpunkten. Trendidentifiering. Samma signaler kan genereras med hjälp av enkla eller exponentiella glidmedel. Som noterat ovan Preferensen beror på varje enskild person. Dessa exempel nedan kommer att använda både enkla och exponentiella glidande medelvärden. Termen glidande medel gäller både enkla och exponentiella glidande medelvärden. Riktningen för glidande medel ger viktig information om priser. Ett stigande glidande medelvärde visar att priserna i allmänhet ökar Ett fallande glidande medelvärde indikerar att priserna i genomsnitt faller. Ett stigande långsiktigt glidande medel återspeglar en långsiktig uppgång. Ett fallande långsiktigt glidande medel återspeglar en långsiktig nedåtgående trend. Tabellen ovan visar 3M MMM med en 150- dag exponentiell glidande medelvärde Detta exempel visar hur bra glidande medelvärden fungerar när trenden är stark. Den 150-dagars EMA-enheten avstod i november 2007 en d igen i januari 2008 Observera att det tog 15 nedgångar för att vända riktningen för detta glidande medelvärde. Dessa eftersläpande indikatorer identifierar trendomvandlingar som de uppträder i bästa fall eller efter att de uppstått i värsta fall. MMM fortsatte under mars 2009 och ökade sedan 40-50 Meddelande Att 150-dagars EMA inte kom upp förrän efter denna överskott När det gjorde det, fortsatte MMM högre de närmaste 12 månaderna. Rörande medelvärden fungerar briljant i starka trender. Dubbelkorsningar. Två rörliga medelvärden kan användas tillsammans för att generera crossover-signaler I Teknisk analys av finansmarknaderna John Murphy kallar det för dubbla crossover-metoden Dubbelkorsningar omfattar ett relativt kort glidande medelvärde och ett relativt långt glidande medelvärde. Som med alla glidande medelvärden definierar den allmänna längden av glidande medel tidsramen för systemet Ett system som använder en 5-dagars EMA och 35-dagars EMA skulle anses vara kortsiktig A-system med användning av en 50-dagars SMA och 200-dagars SMA skulle anses vara medellång sikt, kanske till och med lång te rm. En bullish crossover uppträder när det kortare glidande medelvärdet korsar det längre glidande medlet. Detta kallas också ett gyllene kors. En bearish crossover uppträder när det kortare glidande medelvärdet korsar det längre glidande medlet. Detta kallas ett dött kors. Övergångar producerar relativt sena signaler Systemet använder sig för allt av två eftersläpande indikatorer. Ju längre de rörliga genomsnittliga perioderna desto större är fördröjningen i signalerna. Dessa signaler fungerar bra när en bra trend tar i taget. Men ett glidande medelvärdesöverföringssystem kommer att producera massor av whipsaws i avsaknad av en stark trend. Det finns också en trippel crossover-metod som involverar tre glidande medelvärden. Igen genereras en signal när det kortaste glidande medelvärdet passerar de två längre glidande medelvärdena. Ett enkelt trippelöverföringssystem kan innebära 5-dagars, 10- dag och 20 dagars glidande medelvärden. Diagrammet ovan visar Home Depot HD med en 10-dagars EMA-grön prickad linje och 50-dagars EMA röd linje. Den svarta linjen är dagpenningen Y nära Med ett glidande medelvärde skulle crossover ha resulterat i tre whipsaws innan du fick en bra handel. Den 10-dagars EMA bröt under 50-dagars EMA i slutet av oktober 1, men det varade inte länge då 10-dagarna flyttade tillbaka ovanför i mitten av november 2 Detta kors varade längre men nästa bearish crossover i januari 3 inträffade i slutet av november prisnivåer, vilket resulterade i en annan whipsaw Denna baisse korset varade inte länge då 10-dagars EMA flyttade tillbaka över 50 dagarna några dagar senare 4 Efter tre dåliga signaler föreslog den fjärde signalen ett starkt drag när stocken avancerade över 20. Det finns två takeaways här. Först är övergångar benägen för whipsaw. Ett pris - eller tidsfilter kan användas för att förhindra whipsaws. Handlare kan kräva crossover för att vara 3 dagar före skådespel eller kräva att 10-dagars EMA flyttar över 50-dagars EMA med en viss mängd före skådespelande, kan MACD användas för att identifiera och kvantifiera dessa övergångar. MACD 10,50,1 visar en linje representerar de olika ence mellan de två exponentiella glidande medelvärdena MACD blir positivt under ett gyllene kors och negativt under ett dött kors. Percentagepris Oscillatorn PPO kan användas på samma sätt för att visa procentuella skillnader. Notera att MACD och PPO är baserade på exponentiella glidande medelvärden och kommer inte att Matcha med enkla glidande medelvärden. Detta diagram visar Oracle ORCL med 50-dagars EMA, 200-dagars EMA och MACD 50,200,1. Det fanns fyra glidande medelvärde över en 2 1 2-årsperiod De första tre resulterade i whipsaws eller dåliga affärer En hållbar trend började med fjärde korsningen som ORCL avancerad till mitten av 20-talet. Återigen fungerar glidande medelvärde överst när trenden är stark, men producerar förluster i frånvaro av en trend. Prisövergångar. Medelvärdena kan också användas för att generera signaler med enkla prisövergångar En bullish signal genereras när priserna flyttar över det glidande genomsnittet En baisseignal genereras när priserna går under det glidande medeltalet Prisövergångar kan vara kombineras för att handla inom den större trenden. Det längre glidande mediet sätter tonen för den större trenden och det kortare glidande medlet används för att generera signalerna. Man skulle leta efter hausade priskors endast när priserna redan ligger över det längre glidande genomsnittet. Detta skulle vara handel I överensstämmelse med den större trenden Om exempelvis priset ligger över 200-dagars glidande medelvärde, skulle kartläggare bara fokusera på signaler när priset rör sig över 50-dagars glidande medelvärde. Självklart skulle ett drag under det 50-dagars glidande genomsnittet före detta En signal, men sådana baisseövergångar skulle ignoreras eftersom den större trenden är upp. Ett baisse kors skulle helt enkelt föreslå en återhämtning inom en större uppåtgående. Ett kors bakom 50-dagars glidande medelvärde skulle signalera en uppgång i priserna och fortsättningen av den större uppåtgående . Nästa diagram visar Emerson Electric EMR med 50-dagars EMA och 200-dagars EMA. Aktien flyttades ovan och hölls över det 200-dagars glidande medeltalet i augusti. Det fanns dips under 50-dagars EMA i början av november och igen i början av februari Priserna flyttade snabbt tillbaka över 50-dagars EMA för att ge haussecken signaler gröna pilar i överensstämmelse med den större uppåtgående MACD 1,50,1 visas i indikatorfönstret för att bekräfta priskors över eller under 50-dagars EMA Den 1-dagars EMA är lika med slutkursen MACD 1,50,1 är positiv när stängningen ligger över 50-dagars EMA och negativ när stängningen ligger under 50-dagars EMA. Support and Resistance. Moving medeltal Kan också fungera som stöd i en uptrend och motstånd i en downtrend. En kortsiktig uppgång kan hitta stöd nära det 20-dagars enkla glidande medlet, vilket också används i Bollinger Bands. En långsiktig uptrend kan hitta stöd nära 200-dagarna Enkelt glidande medelvärde, vilket är det mest populära långsiktiga glidande genomsnittet Om faktum kan det 200-dagars glidande medletet erbjuda stöd eller motstånd helt enkelt för att den används så mycket. Det är nästan som en självuppfyllande profetia. Tabellen ovan visar NY Komposit med 200-dagars enkla rörliga avera ge från mitten av 2004 till slutet av 2008 200-dagen gav stöd flera gånger under förskottet När trenden var omvänd med en dubbelstödspåpa, fungerade 200-dagars glidande medelvärde som motstånd runt 9500. Förvänta dig inte exakt stöd och motstånd nivåer från glidande medelvärden, särskilt längre glidande medelvärden Marknaderna drivs av känslor, vilket gör dem benägna att överskridas. I stället för exakta nivåer kan glidande medelvärden användas för att identifiera stöd - eller motståndszoner. Fördelarna med att använda glidande medelvärden måste vägas mot nackdelar Flyttande medelvärden är trenden efter eller eftersläpande indikatorer som alltid kommer att vara ett steg bakom Detta är inte nödvändigtvis en dålig sak Trots allt är trenden din vän och det är bäst att handla i riktning mot trenden. Flyttande medel garanterar att en näringsidkare är i linje med den nuvarande trenden Även om trenden är din vän, spenderar värdepapper mycket tid i handelsområdena, vilket ger rörliga medeltal ineffektiva Ive I en trend kommer glidande medelvärden att hålla dig kvar, men också ge sena signaler. Förvänta dig inte att sälja högst och köpa i botten med hjälp av glidande medelvärden. Som med de flesta tekniska analysverktyg bör rörliga medelvärden inte användas på egen hand , Men i kombination med andra komplementära verktyg kan Chartists använda glidande medelvärden för att definiera den övergripande trenden och sedan använda RSI för att definiera överköpta eller överlämnade nivåer. Tillägg av rörliga medelvärden till StockCharts Charts. Medelvärden är tillgängliga som prisöverlagringsfunktion på SharpCharts arbetsbänk Användning Överlaysmenyn kan användarna välja antingen ett enkelt glidande medelvärde eller ett exponentiellt glidande medelvärde. Den första parametern används för att ställa in antalet tidsperioder. En valfri parameter kan läggas till för att ange vilket prisfält som ska användas i beräkningarna - O för Open, H för High, L for Low, och C for Close. Ett komma används för att separera parametrar. En annan valfri parameter kan läggas till för att flytta de glidande medelvärdena till vänster förbi eller rätt framtid Ett negativt tal -10 skulle flytta det glidande medlet till vänster 10 perioder Ett positivt tal 10 skulle flytta det glidande medlet till de rätta 10 perioderna. Flera glidande medelvärden kan överlagras prissättet genom att helt enkelt lägga till en annan överlagringslinje till arbetsbänk StockCharts medlemmar kan ändra färger och stil för att skilja mellan flera glidande medelvärden Efter att ha valt en indikator öppnar du Avancerade alternativ genom att klicka på den lilla gröna triangeln. Avancerade alternativ kan också användas för att lägga till ett glidande genomsnittligt överlag till andra tekniska indikatorer som RSI, CCI och Volume. Klicka här för ett live-diagram med flera olika glidande medelvärden. Använd Moving Averages med StockCharts Scans. Here är några exempel skanningar som StockCharts medlemmar kan använda för att söka efter olika rörliga genomsnittssituationer. Bullish Moving Average Cross Denna sökning söker efter aktier med ett stigande 150-dagars enkelt glidande medelvärde och ett hausseartat kors på 5-dagars EMA och 35-dagars EMA 150-dagars glidande medelvärde ökar så länge som det handlar över sin nivå för fem dagar sedan. Ett hausseartat kors inträffar när 5-dagars EMA rör sig över 35-dagars EMA på över genomsnittlig volym. Bärbar rörlig medelkors Denna sökning söker efter aktier med en fallande 150- Dags enkelt glidande medelvärde och ett baisse kors av 5-dagars EMA och 35-dagars EMA Det 150-dagars glidande medlet faller så länge det handlar under sin nivå för fem dagar sedan. Ett baisse kors inträffar när 5-dagars EMA flyttas under 35-dagars EMA på abo Ve genomsnittlig volym. Ytterligare studie. John Murphy s bok har ett kapitel som ägnas åt glidande medelvärden och deras olika användningsområden. Murphy täcker för och nackdelar med glidande medelvärden. Dessutom visar Murphy hur glidande medelvärden arbetar med Bollinger Bands och kanalbaserade handelssystem. Teknisk Analys av finansmarknaderna John Murphy. Moving genomsnittliga och exponentiella utjämningsmodeller. Som ett första steg för att flytta bortom genomsnittliga modeller kan slumpmässiga promenadmodeller och linjära trendmodeller, nonseasonal mönster och trender extrapoleras med hjälp av en rörlig genomsnitts - eller utjämningsmodell. Grundläggande antaganden bakom medelvärdes - och utjämningsmodeller är att tidsserierna är lokalt stationära med ett långsamt varierande medelvärde. Därför tar vi ett rörligt lokalt medelvärde för att uppskatta det nuvarande värdet av medelvärdet och sedan använda det som prognosen för den närmaste framtiden. Det kan vara Betraktas som en kompromiss mellan medelmodellen och slumpmässig-walk-utan-drift-modellen Samma strategi kan användas för att uppskatta och extrapolera en lokal trend Ett glidande medel kallas ofta en jämn version av den ursprungliga serien, eftersom kortsiktiga medelvärden medför att utjämning av stötarna i den ursprungliga serien. Genom att justera graden av utjämning av bredden på glidande medelvärde kan vi hoppas att vi slår något slag Av optimal balans mellan prestanda för medel - och slumpmässiga gångmodeller Den enklaste typen av medelvärdesmodell är det enkla lika viktade rörliga genomsnittet. Prognosen för värdet av Y vid tiden t 1 som är gjord vid tiden t är lika med det enkla genomsnittet av de senaste m-observationerna. Här och på andra ställen kommer jag att använda symbolen Y-hat för att kunna förutse en prognos av tidsserie Y som gjorts så tidigt som möjligt före en given modell. Detta medel är centrerat vid period-m 1 2, vilket innebär att uppskattningen av Den lokala medelvärdet tenderar att ligga bakom det verkliga värdet av det lokala medelvärdet med ca m 1 2 perioder Således säger vi att medeltal för data i det enkla glidande medlet är m 1 2 relativt den period som prognosen beräknas för det här är hur lång tid prognoserna tenderar att ligga bakom vändpunkterna i data. Om du till exempel medger de senaste 5 värdena kommer prognoserna att vara cirka 3 perioder sent för att svara på vändpunkter. Observera att om m 1, Den enkla glidande SMA-modellen motsvarar den slumpmässiga promenadmodellen utan tillväxt Om m är mycket stor jämförbar med längden av uppskattningsperioden är SMA-modellen lika med medelmodellen. Som med vilken parameter som helst av en prognosmodell är det vanligt för att justera värdet på ki n för att få den bästa passformen till data, dvs de minsta prognosfelen i genomsnitt. Här är ett exempel på en serie som verkar uppvisa slumpmässiga fluktuationer runt ett långsamt varierande medel. Låt oss försöka passa det med en slumpmässig promenad modell, vilket motsvarar ett enkelt glidande medelvärde av 1 term. Slumpmässig gångmodell svarar väldigt snabbt på förändringar i serien, men därigenom väljer den mycket av bruset i data, de slumpmässiga fluktuationerna samt signalen den lokala medelvärde Om vi ​​istället försöker ett enkelt glidande medelvärde på 5 termer får vi en snyggare uppsättning prognoser. Det 5-åriga enkla glidande medlet ger betydligt mindre fel än den slumpmässiga gångmodellen i detta fall Medelåldern för data i detta prognosen är 3 5 1 2, så att den tenderar att ligga bakom vändpunkter med cirka tre perioder. Till exempel verkar en nedgång ha skett i period 21, men prognoserna vänder inte om till flera perioder senare. Notera att den långsiktiga termiska prognoser från SMA mod el är en horisontell rak linje, precis som i den slumpmässiga promenadmodellen. Således antar SMA-modellen att det inte finns någon trend i data. Även om prognoserna från slumpmässig promenadmodellen helt enkelt motsvarar det senast observerade värdet, kommer prognoserna från SMA-modellen är lika med ett vägt genomsnitt av de senaste värdena. De konfidensbegränsningar som beräknas av Statgraphics för de långsiktiga prognoserna för det enkla rörliga genomsnittet blir inte större eftersom prognosen för horisonten ökar. Detta är uppenbarligen inte korrekt. Tyvärr finns ingen underliggande statistisk teori som berättar hur förtroendeintervallen borde öka för denna modell. Det är emellertid inte så svårt att beräkna empiriska uppskattningar av konfidensgränserna för prognosen för längre horisont. Till exempel kan du skapa ett kalkylblad där SMA-modellen skulle användas för att prognostisera två steg framåt, 3 steg framåt, etc inom det historiska dataprovet. Du kan sedan beräkna provstandardavvikelserna av fel vid varje prognos h orizon och konstruera sedan konfidensintervaller för längre siktprognoser genom att lägga till och subtrahera multiplar av lämplig standardavvikelse. Om vi ​​försöker ett 9-sikt enkelt glidande medelvärde får vi ännu smidigare prognoser och mer av en långsammare effekt. Medelåldern är Nu 5 perioder 9 1 2 Om vi ​​tar ett 19-årigt glidande medelvärde, ökar medeltiden till 10. Notera att prognoserna nu försvinner nu bakom vändpunkter med cirka 10 perioder. Vilken mängd utjämning är bäst för denna serie Här är en tabell som jämför deras felstatistik, inklusive ett 3-årigt genomsnitt. Modell C, det 5-åriga glidande genomsnittet, ger det lägsta värdet av RMSE med en liten marginal över de tre och 9-siktiga genomsnitten, och Deras andra statistik är nästan identiska Så, bland modeller med mycket liknande felstatistik kan vi välja om vi föredrar lite mer lyhördhet eller lite mer jämnhet i prognoserna. Tillbaka till början av sidan. Brons s Exponentiell utjämning exponentiellt vägd glidande medelvärdet. Den enkla glidande medelmodellen beskriven ovan har den oönskade egenskapen som den behandlar de senaste k-observationerna lika och fullständigt ignorerar alla föregående observationer Intuitivt bör tidigare data diskonteras mer gradvis - till exempel bör den senaste observationen Få lite mer vikt än 2: a senast och 2: a senast bör få lite mer vikt än den 3: e senaste, och så vidare. Den enkla exponentiella utjämning SES-modellen åstadkommer detta. Låt beteckna en utjämningskonstant ett tal mellan 0 och 1 Ett sätt att skriva modellen är att definiera en serie L som representerar den aktuella nivån, dvs det lokala medelvärdet av serien som uppskattat från data upp till idag. Värdet av L vid tid t beräknas rekursivt från sitt eget tidigare värde som detta. Således är det nuvarande utjämnade värdet en interpolation mellan det tidigare jämnda värdet och den aktuella observationen, där kontrollen av det interpolerade värdet är så nära som möjligt cent observation Prognosen för nästa period är helt enkelt det nuvarande utjämnade värdet. Evivalent kan vi uttrycka nästa prognos direkt i form av tidigare prognoser och tidigare observationer, i någon av följande ekvivalenta versioner I den första versionen är prognosen en interpolering Mellan föregående prognos och tidigare observation. I den andra versionen erhålls nästa prognos genom att justera föregående prognos i riktning mot det föregående felet med en bråkdel. Erroren vid tidpunkten t I den tredje versionen är prognosen en exponentiellt viktad dvs diskonterat glidande medelvärde med rabattfaktor 1.Interpoleringsversionen av prognosformuläret är det enklaste att använda om du implementerar modellen på ett kalkylblad som passar i en enda cell och innehåller cellreferenser som pekar på föregående prognos, föregående observation och cellen där värdet av lagras. Notera att om 1, motsvarar SES-modellen en slumpmässig promenadmodell wit träväxt Om 0, motsvarar SES-modellen den genomsnittliga modellen, förutsatt att det första släta värdet sätts lika med medelvärdet Return to top of the page. Den genomsnittliga åldern för data i prognosen för enkel exponentiell utjämning är 1 relativ till den period som prognosen beräknas för. Detta är inte tänkt att vara uppenbart, men det kan enkelt visas genom att utvärdera en oändlig serie. Därför tenderar den enkla glidande genomsnittliga prognosen att ligga bakom vändpunkter med cirka 1 period. Till exempel när 0 5 fördröjningen är 2 perioder när 0 2 fördröjningen är 5 perioder då 0 1 fördröjningen är 10 perioder och så vidare. För en given medelålder, dvs mängden fördröjning, är den enkla exponentiella utjämning SES-prognosen något överlägsen den enkla rörelsen genomsnittlig SMA-prognos eftersom den lägger relativt större vikt vid den senaste observationen - det är något mer responsivt på förändringar som inträffade under det senaste. Till exempel har en SMA-modell med 9 villkor och en SES-modell med 0 2 båda en genomsnittlig ålder av 5 för da ta i sina prognoser, men SES-modellen lägger mer vikt på de senaste 3 värdena än SMA-modellen och samtidigt glömmer det inte helt värderingar som är mer än 9 perioder gamla, vilket visas i det här diagrammet. En annan viktig fördel med SES-modellen över SMA-modellen är att SES-modellen använder en utjämningsparameter som är kontinuerligt variabel så att den lätt kan optimeras genom att använda en solveralgoritm för att minimera medelkvadratfelet. Det optimala värdet av SES-modellen för denna serie visar sig Att vara 0 2961, som visas här. Medelåldern för data i denna prognos är 1 0 2961 3 4 perioder, vilket liknar det för ett 6-sikt enkelt glidande medelvärde. De långsiktiga prognoserna från SES-modellen är En horisontell rak linje som i SMA-modellen och den slumpmässiga promenadmodellen utan tillväxt Men notera att de konfidensintervaller som beräknas av Statgraphics nu avviker på ett rimligt sätt och att de är väsentligt smalare än förtroendeintervallet för rand Om walk-modellen SES-modellen förutsätter att serien är något mer förutsägbar än den slumpmässiga promenadmodellen. En SES-modell är egentligen ett speciellt fall av en ARIMA-modell, så den statistiska teorin om ARIMA-modeller ger en bra grund för att beräkna konfidensintervaller för SES-modell SES-modellen är speciellt en ARIMA-modell med en icke-säsongsskillnad, en MA 1-term och ingen konstant term som annars kallas en ARIMA 0,1,1-modell utan konstant MA1-koefficienten i ARIMA-modellen motsvarar Kvantitet 1- i SES-modellen Om du till exempel passar en ARIMA 0,1,1-modell utan konstant till den analyserade serien, visar den uppskattade MA 1-koefficienten sig på 0 7029, vilket är nästan exakt en minus 0 2961. Det är möjligt att lägga till antagandet om en icke-noll konstant linjär trend för en SES-modell. Ange bara en ARIMA-modell med en icke-säsongsskillnad och en MA 1-term med en konstant, dvs en ARIMA 0,1,1-modell med konstant De långsiktiga prognoserna kommer att Då har en trend som är lika med den genomsnittliga trenden som observerats under hela estimeringsperioden. Du kan inte göra detta i samband med säsongsjustering, eftersom säsongsjusteringsalternativen är inaktiverade när modelltypen är inställd på ARIMA. Du kan dock lägga till en konstant lång Termisk exponentialutveckling till en enkel exponentiell utjämningsmodell med eller utan säsongjustering genom att använda inflationsjusteringsalternativet i prognostiseringsförfarandet. Den lämpliga inflationsprocenttillväxten per period kan uppskattas som lutningskoefficienten i en linjär trendmodell monterad på data i Samband med en naturlig logaritmtransformation, eller det kan baseras på annan oberoende information om långsiktiga tillväxtutsikter. Tillbaka till början av sidan. Brett s Linjär dvs dubbel exponentiell utjämning. SMA-modellerna och SES-modellerna antar att det inte finns någon trend av Vilken typ som helst i de data som vanligtvis är ok eller åtminstone inte för dålig för 1-stegs prognoser när data är relativt noi sy och de kan modifieras för att införliva en konstant linjär trend som visad ovan. Vad sägs om kortsiktiga trender Om en serie visar en varierande tillväxthastighet eller ett cykliskt mönster som står klart mot bruset och om det finns behov av att Prognos mer än 1 år framåt, kan uppskattning av en lokal trend också vara ett problem. Den enkla exponentiella utjämningsmodellen kan generaliseras för att erhålla en linjär exponentiell utjämning av LES-modell som beräknar lokala uppskattningar av både nivå och trend. Den enklaste tidsvarierande trenden Modellen är Brown s linjär exponentiell utjämningsmodell, som använder två olika släta serier som centreras vid olika tidpunkter. Prognosformeln baseras på en extrapolering av en linje genom de två centren. En mer sofistikerad version av denna modell, Holt s, är diskuteras nedan. Den algebraiska formen av Browns linjära exponentiella utjämningsmodell, som den enkla exponentiella utjämningsmodellen, kan uttryckas i ett antal olika men e kvivalenta former Standardformen för denna modell uttrycks vanligen enligt följande. Låt S beteckna den singelglatta serien som erhållits genom att applicera enkel exponentiell utjämning till serie Y Det betyder att värdet på S vid period t ges av. Minns att under enkel exponentiell utjämning skulle detta vara prognosen för Y vid period t 1 Låt sedan S beteckna den dubbelsidiga serien som erhållits genom att applicera enkel exponentiell utjämning med samma till serie S. Slutligen är prognosen för Y tk för vilken som helst K 1, ges av. Detta ger e 1 0 dvs lurar lite och låt den första prognosen motsvara den faktiska första observationen och e 2 Y 2 Y 1, varefter prognoser genereras med hjälp av ekvationen ovan. Detta ger samma monterade värden Som formel baserad på S och S om den senare startades med användning av S 1 S 1 Y 1 Denna version av modellen används på nästa sida som illustrerar en kombination av exponentiell utjämning med säsongsjustering. Helt s linjär exponentiell utjämning. s LES-modellen beräknar lokala uppskattningar av nivå och trend genom att utjämna de senaste uppgifterna, men det faktum att det gör det med en enda utjämningsparameter ställer en begränsning på datamönstren att den kan passa nivån och trenden får inte variera vid oberoende priser Holt s LES-modellen tar upp problemet genom att inkludera två utjämningskonstanter, en för nivån och en för trenden. När som helst t, som i Brown s-modellen, finns det en uppskattning L t på lokal nivå och en uppskattning T T av den lokala trenden Här beräknas de rekursivt från värdet av Y observerat vid tid t och de tidigare uppskattningarna av nivån och trenden med två ekvationer som tillämpar exponentiell utjämning åt dem separat. Om den beräknade nivån och trenden vid tiden t-1 är L tl och T t-1, varför prognosen för Y t som skulle ha gjorts vid tid t-1 är lika med L t-1 T t-1 När det verkliga värdet observeras, uppdateras uppskattningen av nivån beräknas rekursivt genom att interpolera mellan Yt och dess prognos L t-1 T t 1 med vikter av och 1. Förändringen i beräknad nivå, nämligen L t L t 1 kan tolkas som en bullrig mätning av Trenden vid tiden t Den uppdaterade uppskattningen av trenden beräknas därefter rekursivt genom interpolering mellan L t L t 1 och den tidigare uppskattningen av trenden, T t-1 med vikter av och 1.Tolkningen av trendutjämningskonstanten är analog med den för jämnliknande konstanten Modeller med små värden antar att trenden förändras bara mycket långsamt över tiden medan modeller med större antar att det förändras snabbare En modell med en stor tror att den avlägsna framtiden är mycket osäker eftersom fel i trendberäkning blir ganska viktiga när prognoser mer än en period framöver. Av sidan. Utjämningskonstanterna och kan beräknas på vanligt sätt genom att minimera medelkvadratfelet i de 1-stegs-prognoserna. När detta görs i Statgraphics visar uppskattningarna att vara 0 3048 och 0 008 Det mycket lilla värdet av Innebär att modellen antar mycket liten förändring i trenden från en period till en annan, så i princip försöker denna modell uppskatta en långsiktig trend. I analogi med begreppet medelålder för de data som används vid uppskattning av t han lokal nivå av serien, är den genomsnittliga åldern för de data som används för att uppskatta den lokala trenden proportionell mot 1, men inte exakt lika med det i det här fallet visar sig vara 1 0 006 125 Detta är inte mycket exakt nummer Eftersom beräkningsnoggrannheten inte är riktigt 3 decimaler, men den har samma generella storleksordning som provstorleken på 100, så denna modell är medeltal över ganska mycket historia för att beräkna trenden. Prognosplotten nedan visar att LES-modellen beräknar en något större lokal trend i slutet av serien än den ständiga trenden som uppskattas i SES-trendmodellen. Det uppskattade värdet är nästan identiskt med det som erhållits genom att montera SES-modellen med eller utan trend , så det här är nästan samma modell. Nu ser dessa ut som rimliga prognoser för en modell som ska beräkna en lokal trend. Om du eyeball denna plot ser det ut som om den lokala trenden har vänt sig nedåt i slutet av Serie Wh Vid har hänt Parametrarna för denna modell har uppskattats genom att minimera kvadreringsfelet i 1-stegs prognoser, inte längre prognoser, i vilket fall trenden gör inte stor skillnad. Om allt du tittar på är 1 - steg framåtfel, ser du inte den större bilden av trender över säga 10 eller 20 perioder För att få denna modell mer i linje med vår ögonbolls extrapolering av data kan vi manuellt justera trendutjämningskonstanten så att den Använder en kortare baslinje för trenduppskattning. Om vi ​​exempelvis väljer att ställa in 0 1, är medelåldern för de data som används för att uppskatta den lokala trenden 10 perioder, vilket betyder att vi medeltar trenden under de senaste 20 perioderna eller så Här är vad prognosplottet ser ut om vi ställer in 0 1 samtidigt som vi håller 0 3 Det ser intuitivt rimligt ut för den här serien, även om det är troligt farligt att extrapolera denna trend mer än 10 perioder i framtiden. Vad med felstatistik Här är En modell jämförelse f eller de två modellerna som visas ovan samt tre SES-modeller Det optimala värdet på SES-modellen är ungefär 0 3, men liknande resultat med något mer eller mindre responsivitet erhålls med 0 5 och 0 2. En Holt s linjär expo-utjämning Med alfa 0 3048 och beta 0 008. B Holt s linjär expjäkning med alfa 0 3 och beta 0 1. C Enkel exponentiell utjämning med alfa 0 5. D Enkel exponentiell utjämning med alfa 0 3. E Enkel exponentiell utjämning med alfa 0 2.De statistiken är nästan identiska, så vi kan verkligen inte göra valet på grundval av prognosfel i ett steg i dataprovet. Vi måste falla tillbaka på andra överväganden. Om vi ​​starkt tror att det är vettigt att basera strömmen trendberäkning om vad som hänt under de senaste 20 perioderna eller så kan vi göra ett fall för LES-modellen med 0 3 och 0 1 Om vi ​​vill vara agnostiska om det finns en lokal trend, kan en av SES-modellerna Vara lättare att förklara och skulle också ge mer medel e-of-the-road prognoser för de kommande 5 eller 10 perioderna Gå tillbaka till toppen av sidan. Vilken typ av trend-extrapolation är bäst horisontellt eller linjärt. Empiriska bevis tyder på att om uppgifterna redan har justerats om det behövs för inflationen, då Det kan vara oskäligt att extrapolera kortsiktiga linjära trender långt in i framtiden. Trenden som uppenbaras idag kan slakta i framtiden på grund av olika orsaker som produktförstöring, ökad konkurrens och konjunkturnedgångar eller uppgångar i en bransch. Därför är det enkelt exponentiellt Utjämning utförs ofta bättre utom provet än vad som annars skulle kunna förväntas trots sin naiva horisontella trend-extrapolering. Dämpade trendändringar av den linjära exponentiella utjämningsmodellen används också i praktiken för att införa en konservatismedel i dess trendprognoser. Den dämpade trenden LES-modellen kan implementeras som ett speciellt fall av en ARIMA-modell, i synnerhet en ARIMA 1,1,2-modell. Det är möjligt att beräkna konfidensintervall arou nd långsiktiga prognoser som produceras av exponentiella utjämningsmodeller, genom att betrakta dem som speciella fall av ARIMA-modeller Var försiktig att inte alla mjukvaror beräknar konfidensintervaller för dessa modeller korrekt. Bredden på konfidensintervallet beror på jag RMS-felet i modellen, ii typen av utjämning enkel eller linjär iii värdet s för utjämningskonstanten s och iv antalet framåtprognoser du förutspår Allmänt sprids intervallen snabbare och blir större i SES-modellen och de sprider sig mycket snabbare när linjär snarare än enkel utjämning används Detta avsnitt diskuteras vidare i avsnittet ARIMA-modeller i anteckningarna. Gå tillbaka till början av sidan.

Comments